Construction of a Fish‐like Robot Based on High Performance Graphene/PVDF Bimorph Actuation Materials
نویسندگان
چکیده
Smart actuators have many potential applications in various areas, so the development of novel actuation materials, with facile fabricating methods and excellent performances, are still urgent needs. In this work, a novel electromechanical bimorph actuator constituted by a graphene layer and a PVDF layer, is fabricated through a simple yet versatile solution approach. The bimorph actuator can deflect toward the graphene side under electrical stimulus, due to the differences in coefficient of thermal expansion between the two layers and the converse piezoelectric effect and electrostrictive property of the PVDF layer. Under low voltage stimulus, the actuator (length: 20 mm, width: 3 mm) can generate large actuation motion with a maximum deflection of about 14.0 mm within 0.262 s and produce high actuation stress (more than 312.7 MPa/g). The bimorph actuator also can display reversible swing behavior with long cycle life under high frequencies. on this basis, a fish-like robot that can swim at the speed of 5.02 mm/s is designed and demonstrated. The designed graphene-PVDF bimorph actuator exhibits the overall novel performance compared with many other electromechanical avtuators, and may contribute to the practical actuation applications of graphene-based materials at a macro scale.
منابع مشابه
Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene.
Although widely investigated, novel electromechanical actuators with high overall actuation performance are still in urgent need for various practical and scientific applications, such as robots, prosthetic devices, sensor switches, and sonar projectors. In this work, combining the properties of unique environmental perturbations-actuated deformational isomerization of polydiacetylene (PDA) and...
متن کاملProgrammable Molecular Composites of Tandem Proteins with Graphene-Oxide for Efficient Bimoprh Actuators
The rapid expansion in the spectrum of two-dimensional (2D) materials has driven the efforts of research on the fabrication of 2D composites and heterostructures. Highly ordered structure of 2D materials provides an excellent platform for controlling the ultimate structure and properties of the composite material with precision. However, limited control over the structure of the adherent materi...
متن کاملDevelopment of a compliant, high-efficiency and bio-inspired snake-like swimming robot
The work reported in this paper addresses the development of soft bodied robots for adaptive interaction with the environment and for increased energy efficiency, thanks to intrinsic body properties and to storage of mechanical energy. Swimming locomotion has been chosen as elective field, because of an active research framework (European research project “Lampetra” [1] on eel-like artefacts) a...
متن کاملReconstructing human push recovery reactions using a three dimensional under-actuated bipedal robot
This paper presents the ability of hybrid zero dynamics (HZD) feedback control method to reproduce human like movements for walking push recovery of an under-actuated 3D biped model. The balance recovery controller is implemented on a three-dimensional under-actuated bipedal model subjected to a push disturbance. The biped robot model is considered as a hybrid system with eight degrees of freed...
متن کاملThe application of graphene based materials for actuators
Compared with traditional actuation materials, such as piezoelectric, ferroelectric and conducting polymer materials which suffered from low flexibility, high driving voltages and low energy efficiency, graphene exhibits outstanding mechanical, electrical, optical properties and chemical stability, which made it a good candidate for actuation materials. In this review, the recent progress in gr...
متن کامل